Seminar| Institute of Mathematical Sciences
Time: Wednesday, May 29th, 2024 , 14:30-15:30
Location:IMS, RS408
Speaker: Fei Wang, Shanghai Jiaotong University
Abstract: We consider the 2D, incompressible Navier-Stokes equations near the Couette flow, $\omega^{(NS)} = 1 + \eps \omega$, set on the channel $\mathbb{T} \times [-1, 1]$, supplemented with Navier boundary conditions on the perturbation, $\omega|_{y = \pm 1} = 0$. We are simultaneously interested in two asymptotic regimes that are classical in hydrodynamic stability: the long time, $t \rightarrow \infty$, stability of background shear flows, and the inviscid limit, $\nu \rightarrow 0$ in the presence of boundaries. Given small ($\eps \ll 1$, but independent of $\nu$) Gevrey 2- datum, $\omega_0^{(\nu)}(x, y)$, that is supported away from the boundaries $y = \pm 1$.
This is the first nonlinear asymptotic stability result of its type, which combines three important physical phenomena at the nonlinear level: inviscid damping, enhanced dissipation, and long-time inviscid limit in the presence of boundaries.
This is the first nonlinear asymptotic stability result of its type, which combines three important physical phenomena at the nonlinear level: inviscid damping, enhanced dissipation, and long-time inviscid limit in the presence of boundaries.