数学科学研究所
Insitute of Mathematical Science

Seminar: Manifold Learning for Functional Data

Seminar| Institute of Mathematical Sciences

Time: Friday, November 14th, 2025,10:30-11:30

LocationRS408, IMS

Speaker: Ruoxu Tan, Tongji University


Abstract: Unknown manifold structures may arise in functional data, especially when functional data exhibit the phase variation. Our work is built upon this manifold assumption. Under the unsupervised setting, we extend a geodesic distance estimation technique for high-dimensional data to functional data, derive the asymptotic convergence under observational errors, and propose a clustering procedure based on manifold learning outcomes. Under the supervised setting, we propose a label-weighted geodesic distance to incorporate the label information. When the manifold learning outcomes are coupled with multivariate classifiers, the procedure induces a family of new functional classifiers. In theory, we show that our functional classifier induced by the k-NN classifier is asymptotically optimal. Numerical examples show some gain of our clustering and classification algorithms.


谭若虚,同济大学助理教授,主要从事函数型数据分析,因果推断,流形学习等方面的研究,相关工作发表在JMLR,JCGSStat. Sin.等期刊,主持国家青年科学基金(C类),入选上海市海外高层次人才计划、国家博士后有关专项计划。


地址:上海市浦东新区华夏中路393号
邮编:201210
上海市徐汇区岳阳路319号8号楼
200031(岳阳路校区)