Seminar| Institute of Mathematical Sciences
Abstract: In this talk, I will discuss a virtual variant of the quantized Coulomb branch constructed by Braverman-Finkelberg-Nakajima, where the convolution product is modified by a virtual intersection. The resulting virtual Coulomb branch acts on the moduli space of quasimaps into the holomorphic symplectic quotient T^*N///G. When G is abelian, over the torus fixed points, this representation is a Verma module. The vertex function, a K-theoretic enumerative invariant introduced by A. Okounkov, can be expressed as a Whittaker function of the algebra. The construction also provides a description of the quantum q-difference module. As an application, this gives a proof of the invariance of the quantum q-difference module under the variation of GIT.