数学科学研究所
Insitute of Mathematical Science

PDE Seminar:The power spectrum of passive scalar turbulence in the Batchelor regime

PDE Seminar| Institute of Mathematical Sciences

TimeThursday, 23:00-23:50 April 23rd, 2020

LocationZoom

 

Speaker: Jacob BedrossianUniversity of Maryland

AbstractIn 1959, Batchelor predicted that passive scalars advected in fluids at finite Reynolds number with small diffusivity κ should display a |k|−1 power spectrum over a small-scale inertial range in a statistically stationary experiment. This prediction has been experimentally and numerically tested extensively in the physics and engineering literature and is a core prediction of passive scalar turbulence. Together with Alex Blumenthal and Sam Punshon-Smith, we have provided the first mathematically rigorous proof of this prediction for a scalar field evolving by advection-diffusion in a fluid governed by the 2D Navier-Stokes equations and 3D hyperviscous Navier-Stokes equations in a periodic box subjected to stochastic forcing at arbitrary Reynolds number. These results are proved by studying the Lagrangian flow map using infinite dimensional extensions of ideas from random dynamical systems. We prove that the Lagrangian flow has a positive Lyapunov exponent (Lagrangian chaos) and show how this can be upgraded to almost sure exponential (universal) mixing of passive scalars at zero diffusivity and further to uniform-in-diffusivity mixing. This in turn is a sufficiently precise understanding of the low-to-high frequency cascade to deduce Batchelor's prediction.


(Join Zoom Meeting

https://us02web.zoom.us/j/909013746?pwd=RDlRNHhLTTM2VGNRNXBiYTA0cGdZdz09 


Meeting ID: 909 013 746

Password: 056351)


  











地址:上海市浦东新区华夏中路393号
邮编:201210
上海市徐汇区岳阳路319号8号楼
200031(岳阳路校区)