数学科学研究所
Insitute of Mathematical Science

Daniel Skodlerack

Career
• 2020-present: Associate Professor, ShanghaiTech University

• 2018-2020: Postdoctoral Fellow, ShanghaiTech University
• 2017:Junior Professor, Humboldt University
• 2015-2016: Research Associate, Imperial College London
• 2015-2018: Visiting Researcher, University of East Anglia
• 2014-2015: Senior Research Associate, University of East Anglia
• 2010-2014: Research Assistant, University of Münster

Education
• 2010: Doctorate in Mathematics, Humboldt University Berlin
• 2005: German Diplom in Mathematics, Humboldt University Berlin 


Research
Daniel Skodlerack is a member of the Institute of Mathematical Sciences.  His work is in the area of Representation Theory and the Langlands program.  His current research focuses on representation theory for classical groups in connection with explicit Local Langlands correspondence.

Selected Publications

1) Before Career:

Webpage: www.skodleracks.co.uk


2) For the Selected publications: Replace everything with the following: 

1 Daniel Skodlerack. The centralizer of a classical group and bruhat tits buildings. Ann. Inst. Fourier (Grenoble) 63 (2013), no. 2, 515–546. MR 3112840

2 Daniel Skodlerack. Embeddings of local fields in simple algebras and simplicial structures. Publ. Mat. 58 (2014), no. 2, 499–516. MR 3264509

3 Daniel Skodlerack. Field embeddings which are conjugate under a p-adic classical group. Manuscripta Math. 144 (2014), no. 1-2, 277–301. MR 3193777 
4 Daniel Skodlerack and Shaun Stevens. Intertwining semisimple characters for p-adic classical groups, Nagoya Math. J. 238 (2020), 137–205. MR 4092850
5 Robert Kurinczuk, Daniel Skodlerack, Shaun Stevens. Endo-parameters for p-adic classical Groups, Inventiones Mathematicae (2020), doi 10.1007/s00222-020-00997-0
Daniel Skodlerack. Semisimple characters for inner forms I: GLm(D), pages 1-52, Algebras and Representation Theory, Springer 2021.
Daniel Skodlerack. Semisimple characters for inner forms II: Quaternionic forms of p-adic classcial groups (p odd), Represent. Theory 24 (2020), 323–359. MR 4128451
Skodlerack, D. Cuspidal irreducible complex or l-modular representations of quaternionic forms of p-adic classical groups for odd p. Monatsh Math 201, 881–942 (2023). https://doi.org/10.1007/s00605-023-01830-5



Email:

dskodlerack@shanghaitech.edu.cn

Office: S413, School of Creativity & Arts


地址:上海市浦东新区华夏中路393号
邮编:201210
上海市徐汇区岳阳路319号8号楼
200031(岳阳路校区)