数学科学研究所
Insitute of Mathematical Science

线性代数I大纲

《线性代数I》教学大纲

一、课程基本信息

开课单位:

数学科学研究所

课程代码:

MATH1112

课程名称:

线性代数I

英文名称:

Linear     Algebra I

:

4

:

64

授课对象:

 

授课语言:

中英文

先修课程:


二、课程简介和教学目的

In this course, we will cover the following contents: Systems of linear equations, Gaussian elimination, matrices, determinants, and Cramer’s rule. Vectors, vector spaces, basis and dimension, linear transformations. Eigenvalues, eigenvectors, and quadratic forms.Objective:Solve and Interpret systems of linear equations.Understand the elementary facts of abstract vector space.Understand the linear transform

三、教学内容、教学方式和学时安排

课堂教学内容

教学进度和学时安排

教学方式

  1. Systems of Linear Equations and            Matrices

1.1 How to solve a system of Linear equations by       Gaussian elimination ?

1.2 Matrix and its main properties.

1.3 Elementary matrices and invertible matrices.

10学时

线上教学、

课后复习(作业)、

讨论和拓展

  1.  Determinants

2.1 Definition of determinants.

2.2 Evaluating determinants.

2.3 Properties of determinants and Cramers rule.

6学时

线上教学、

课后复习(作业)、

讨论和拓展

  1. Euclidean Vector Spaces

3.1 Introduction to n-space.

3.2 Norm, dot product in R^n and its geometry.

3.3 Orthogonality and a new insight of linear system       by geometry.

3.4 Cross product.

6学时

线上教学、

课后复习(作业)、

讨论和拓展

4 General Vector       Spaces

4.1 Vector spaces and subspaces.

4.2 Linear independence.

4.3 Basis and dimension.

4.4 Change of basis.

4.5 Fundamental spaces and rank, nullity of a matrix.

4.6 Matrix transformations.

4.7 Geometry of matrix operators.

16学时

线上教学、

课后复习(作业)、

讨论和拓展

Midterm exam (待定)

2学时

闭卷

  1. Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors.

5.2 Diagonalization

5.3 Complex vector spaces.

6学时

课堂教学、

课后复习(作业)、

讨论和拓展

6 . Inner Product       Spaces

6.1 Inner product and orthogonality in inner product       space.

6.2 Gram-Schmidt process.

6.3 Best approximation and least squares.

5学时

课堂教学、

课后复习(作业)、

讨论和拓展

7. Diagonalization and       Quadratic Forms

7.1 Orthogonal matrices.

7.2 Orthogonal diagonalization.

7.3 Quadratic forms.

5学时

课堂教学、

课后复习(作业)、

讨论和拓展

8. Linear       Transformations

8.1 General linear transformations and isomorphism.

8.2 Compositions and inverse transformations.

8.3 Matrices for general linear transformations.

8.4 Similarity.

6学时

课堂教学、

课后复习(作业)、

讨论和拓展

期末考试

2学时

闭卷

四、推荐教材

书名

作者

译者

出版社

出版时间

ISBN

Elementary Linear Algebra,     10th edition

Howard Anton


Wiley


978-0470458211

五、参考书目

书名

作者

译者

出版社

出版时间

ISBN

 


 


地址:上海市浦东新区华夏中路393号
邮编:201210
上海市徐汇区岳阳路319号8号楼
200031(岳阳路校区)