数学科学研究所
Insitute of Mathematical Science

复分析综合大纲

《复分析》教学大纲

一、课程基本信息

开课单位:

数学科学研究所

课程代码:

MATH1221

课程名称:

复分析

英文名称:

Complex   Analysis

:

3

:

48

授课对象:

 

授课语言:

中英文

先修课程:

数学分析II

二、课程简介和教学目的

This is a course on complex analysis at the advanced undergraduate level. We plan to include the following important properties of holomorphic functions: the power series expansion, Cauchy’s theorem, the conformal map, the calculus of residues, and the uniqueness of analytic continuation. If time permits, we will also talk about various topics about analytic functions. It is assumed that the students, who will take this class, have been trained in mathematical analysis and linear algebra.

三、教学内容、教学方式和学时安排

 

(each   table is meant for 1.5 week, 6 periods )

Chapter 1

Complex      Functions



1.1

Complex Valued Functions



1.2

Complex Differentiability



1.3

The Cauchy-Rieman Equations



1.4

Angles Under Holomorphic Maps



 

 

Chapter 2

Power      Series



2.1

Formal Power Series



2.2

Convergent Power Series



2.3

Relations Between Formal and Convergent Power Series



2.4

Differentiation of Power Series



 

 

 

Chapter 3

Power      Series Continued



3.1

Analytic Functions



3.2

The Inverse and Open Mapping Theorems



3.3

The Local Maximum Modulus Principle







 

 

Chapter 4

Cauchy’s      Theorem



4.1

Holomorphic Functions



4.2

Integrals Over Paths



4.3

Local Primitive for a Holomorphic Function



4.4

Another Description of the Integral Along a Path



 

 

Chapter 5

Cauchy’s      Theorem Continued



5.1

The Homotopy Form of Cauchy’s Theorem



5.2

Existence of Global Primitives



5.3

The Local Cauchy Formula







 

 

Chapter 6

Winding      Numbers



6.1

The Winding Numbers



6.2

The Global Cauchy Theorem



6.3

Artin’s Proof







 

 

Chapter 7

Application      of Cauchy’s Integral Formula



7.1

Uniform Limits of Analytic Functions



7.2

Laurent     Series



7.3

Isolated Singularities







 

 

Chapter 8

Calculus      of Residues



8.1

The Residue Formula



8.2

Evaluations of Definite Integrals



8.3

Fourier Transforms



8.4

Mellin Transforms



 

 

Chapter 9

Conformal      Mappings



9.1

Schwarz Lemma



9.2

Analytic Automorphisms of the Disk



9.3

The Upper Half Plane







 

 

Chapter      10

Conformal      Mappings Continued



10.1

Other Examples



10.2

Fractional Linear Transformations











 

 

Chapter      11

Harmonic      Functions



11.1

Definitions



11.2

Examples



11.3

Basic Properties of Harmonic Functions



11.4




 

 

Chapter      12

Harmonic      Functions Continued



12.1

The Poisson Formula



12.2

Construction of Harmonic Functions



12.3

( Differentiating under the Integral sign  )







 

 

Chapter      13

Various      Analytic Topics



13.1

Jensen’s Formula



13.2

The Picard-Borel Theorem











 

Chapter      14

Various      Analytic Topics Continued



14.1

Bounds by the Real Part



14.2

The Use of Three Circles











 

 

 

 

Final      Exam

The 17th.      Week



















 

四、推荐教材

书名

作者

译者

出版社

出版时间

ISBN

Complex Analysis

Eberhard Freitag, Rolf Busam


Springer; 2nd Edition (2009)


978-3-540-93982-5

五、参考书目

书名

作者

译者

出版社

出版时间

ISBN

Complex Analysis

Serge Lang


Springer; 4th Edition


0-387-98592-1

 


地址:上海市浦东新区华夏中路393号
邮编:201210
上海市徐汇区岳阳路319号8号楼
200031(岳阳路校区)