数学科学研究所
Insitute of Mathematical Science

复分析大纲

                 Complex Analysis

 

1.      Basic Information

Unit:

 

Course Code:

MATH 1221

 

Course Name:

Complex Analysis 

Course Name:

复分析

Credit:

 

Period:

48

Teaching object:

 

Teaching Lagrange:

Chinese & English

Previous Courses:

数学分析I, II

线性代数I

 

 

 

 

2. Course introduction

This is a course on complex analysis at the advanced undergraduate level. We plan to include the following important properties of holomorphic functions: the power series expansion, Cauchy’s theorem, the conformal map, the calculus of residues, and the uniqueness of analytic continuation. If time permits, we will also talk about various topics about analytic functions. It is assumed that the students, who will take this class, have been trained in mathematical analysis and linear algebra.

 

3. Teaching content, method and time arrangement

 

(each table is meant for 1.5 week, 6 periods )

Chapter 1

Complex Functions

 

 

1.1

Complex Valued Functions

 

 

1.2

Complex Differentiability

 

 

1.3

The Cauchy-Rieman Equations

 

 

1.4

Angles Under Holomorphic Maps

 

 

 

 

Chapter 2

Power Series

 

 

2.1

Formal Power Series

 

 

2.2

Convergent Power Series

 

 

2.3

Relations Between Formal and   Convergent Power Series

 

 

2.4

Differentiation of Power Series

 

 

 

 

 

Chapter 3

Power Series Continued

 

 

3.1

Analytic Functions

 

 

3.2

The Inverse and Open Mapping   Theorems

 

 

3.3

The Local Maximum Modulus Principle

 

 

 

 

 

 

 

 

Chapter 4

Cauchy’s Theorem

 

 

4.1

Holomorphic Functions

 

 

4.2

Integrals Over Paths

 

 

4.3

Local Primitive for a Holomorphic   Function

 

 

4.4

Another Description of the Integral   Along a Path

 

 

 

 

Chapter 5

Cauchy’s Theorem Continued

 

 

5.1

The Homotopy Form of Cauchy’s   Theorem

 

 

5.2

Existence of Global Primitives

 

 

5.3

The Local Cauchy Formula

 

 

 

 

 

 

 

 

Chapter 6

Winding Numbers

 

 

6.1

The Winding Numbers

 

 

6.2

The Global Cauchy Theorem

 

 

6.3

Artin’s Proof

 

 

 

 

 

 

 

 

Chapter 7

Application of Cauchy’s Integral    Formula

 

 

7.1

Uniform Limits of Analytic Functions

 

 

7.2

Laurent Series

 

 

7.3

Isolated Singularities

 

 

 

 

 

 

 

 

Chapter 8

Calculus of Residues

 

 

8.1

The Residue Formula

 

 

8.2

Evaluations of Definite Integrals

 

 

8.3

Fourier Transforms

 

 

8.4

Mellin Transforms

 

 

 

 

Chapter 9

Conformal Mappings

 

 

9.1

Schwarz Lemma

 

 

9.2

Analytic Automorphisms of the Disk

 

 

9.3

The Upper Half Plane

 

 

 

 

 

 

 

 

Chapter 10

Conformal Mappings Continued

 

 

10.1

Other Examples

 

 

10.2

Fractional Linear Transformations

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 11

Harmonic Functions

 

 

11.1

Definitions

 

 

11.2

Examples

 

 

11.3

Basic Properties of Harmonic   Functions

 

 

11.4

 

 

 

 

 

Chapter 12

Harmonic Functions Continued

 

 

12.1

The Poisson Formula

 

 

12.2

Construction of Harmonic Functions

 

 

12.3

( Differentiating under the Integral   sign  )

 

 

 

 

 

 

 

 

Chapter 13

Various Analytic Topics

 

 

13.1

Jensen’s Formula

 

 

13.2

The Picard-Borel Theorem

 

 

 

 

 

 

 

 

 

 

 

Chapter 14

 

Various Analytic Topics Continued

 

 

14.1

Bounds by the Real Part

 

 

14.2

The Use of Three Circles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final Exam

The 17th. Week

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


地址:上海市浦东新区华夏中路393号
邮编:201210
上海市徐汇区岳阳路319号8号楼
200031(岳阳路校区)